Government PG College, Ambala Cantt

Course File(Session 2023-24)

Name of Assistant Professor: Ms. Neha Rani

Class: B.A./B.Sc. II Year/4th semester

Section: Non Medical & Computer Science

Subject Code and Name: BM-241/Sequence and Series

SYALLBUS

B.Sc.	B.A.
External: 40	External: 27
Internal: 10	Internal: 06

Time: 3 Hours

Note: Examiner will be required to set nine questions in all. First question will be compulsory, consisting of objective type/short-answer type questions covering the entire syllabus. In addition to that eight more questions will be set, two questions from each Unit. A candidate will be required to answer five questions in all, selecting one question from each unit in addition to compulsory Question No. 1. All questions will carry equal marks.

UNIT - I

Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points, isolated points, limit points, open sets, closed sets, interior of a set, closure of a set in real numbers and their properties. Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem.

$\mathbf{UNIT} - \mathbf{II}$

Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and

monotonic sequences, Cauchy's sequence, Cauchy general principle of convergence, Subsequences, Subsequential limits.

Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series, Hyper Harmonic series or p-series.

UNIT – III

Infinite series: D-Alembert's ratio test, Cauchy's nth root test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test, Gauss Test, Cauchy's integral test, Cauchy's condensation test.

UNIT - IV

Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: abel's lemma, Abel's test, Dirichlet's test, Insertion and removal of parenthesis, re- arrangement of terms in a series, Dirichlet's theorem, Riemann's Re-arrangement theorem, Pringsheim's theorem (statement only), Multiplication of series, Cauchy product of series, (definitions and examples only), Convergence and absolute convergence of infinite products.

Books Recommended:

- 1. R.R. Goldberg : Real Analysis, Oxford & I.B.H. Publishing Co., New Delhi, 1970
- 2. S.C. Malik : Mathematical Analysis, Wiley Eastern Ltd., Allahabad.
- Shanti Narayan : A Course in Mathematical Analysis, S. Chand and company, New Delhi Murray, R. Spiegel : Theory and Problems of Advanced Calculus, Schaum Publishing co., New York
- 4. T.M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985
- 5. Earl D. Rainville, Infinite Series, The Macmillan Co., New York

COURSE OBJECTIVES

The course objectives outlined are as follows:

- 1. Learn to work with logarithmic, exponential, and inverse trigonometric functions.
- 2. Learn to work with infinite sequences and series.
- 3. Learn to work with infinite sequence is bounded.
- 4. Learn to work with an infinite sequence is monotonic.
- 5. Learn to work with an infinite sequence is convergent or divergent.
- 6. Find the sequence of partial sums of an infinite series.
- 7. Determine if a geometric series is convergent or divergent.
- 8. Find the sum of a convergent geometric series.

COURSE OUTCOMES

After the successful completion of the course, students will be able to:

- 1. Determine if an infinite sequence is bounded.
- 2. Determine if an infinite sequence is monotonic.
- 3. Determine if an infinite sequence is convergent or divergent.
- 4. Find the sequence of partial sums of an infinite series.
- 5. Determine if a geometric series is convergent or divergent.
- 6. Find the sum of a convergent geometric series.
- 7. Determine if an infinite series is convergent or divergent by selecting the appropriate test from the following: (a) test for divergence; (b) integral test; (c) p-series test; (d) the comparison tests; (e) alternating series test; (f) absolute convergence test; (g) ratio test; and (h) root test.
- 8. Determine if an infinite series converges absolutely or conditionally.

Lesson Plan

Week No	Scheduled Dates	Topics to be covered
1.	1-6 January	Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points,
2.	8-13 January	Isolated points, limit points, open sets, closed sets
3.	15-20 January	Interior of a set, closure of a set in real numbers and their properties. Bolzano-Weiestrass theorem,
4.	22-27 January	Open covers, Compact sets and Heine-Borel Theorem.
5.	29-3 February	Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences
6.	5-10 February	Cauchy's sequence, Cauchy general principle of convergence, Subsequences, Subsequential limits
7.	12-17 February	Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series, Cauchy's general principle of Convergence of series,
8.	19-24 February	Convergence and divergence of geometric series, Hyper Harmonic series or p-series.
9.	26-2 March	D-Alembert's ratio test, Cauchy's nth root test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test
10.	4-9 March	Gauss Test, Cauchy's integral test, Cauchy's condensation test.
11.	11-16 March	Alternating series, Leibnitz's test, absolute and conditional convergence
12.	18-22 March	Arbitrary series: abel's lemma, Abel's test, Dirichlet's test, Insertion and removal of parenthesis, re- arrangement of terms in a series, Dirichlet's theorem, Riemann's Re-arrangement theorem, Pringsheim's theorem (statement only)
13.	23-31 March	Holi Vacations
14.	1-6 April	Multiplication of series, Cauchy product of series, (definitions and examples only),
15.	8-13 April	Convergence of infinite products
16.	15-20 April	Absolute convergence of infinite products
17.	22-27 April	Final Test, Assignments and REVISION of Contents
Exams Starts		